Friday, October 11, 2013

DICTIONARY OF BIOTECHOLOGY [THE ALPHABET “B”]

DICTIONARY OF BIOTECHOLOGY [THE ALPHABET “B”]

β Sitostanol
See BETA SITOSTANOL (β SITOSTANOL).

β-conglycinin
See BETA-CONGLYCININ.

B Cells
B lymphocytes. See also LYMPHOCYTE, B LYMPHOCYTES, BLAST CELL.

B Lymphocytes
A class of white blood cells originating in the bone marrow and found in blood, spleen, and lymph nodes, they are the precursors of (blood) plasma cells (B cells) that secrete antibodies (IgG) directed against invading antigens (e.g., of pathogenic bacteria). Via a complex “gene splicing” process, the B cells of the human body are able to produce more than one billion different IgG antibodies (i.e., able to bind onto and neutralize a billion different antigens). See also ANTIGEN, ANTIBODY, BLAST CELL, LYMPHOCYTE, PATHOGEN, BACTERIA, GENE SPLICING, IMMUNOGLOBULIN, ALLELIC EXCLUSION.

B-DNA
A helical form of DNA. B-DNA can be formed by adding back water to (dehydrated) A-DNA. B-DNA is the form of DNA of which James Watson and Francis Crick first constructed their model in 1953. It is found in fibers of very high (92%) relative humidity and in solutions of low ionic strength. This corresponds to the form of DNA that is prevalent in the living cell. See also DEOXYRIBONUCLEIC ACID (DNA), A-DNA, ION, CELL.

BAC
Acronym for Bacterial Artificial Chromosomes. See also BACTERIAL ARTIFICIAL CHROMOSOMES (BAC).

Bacillus
Rod-shaped bacteria.

Bacillus subtilis (B. subtilis)
A (rod-shaped) aerobic bacterium commonly used as a host in recombinant DNA experiments. During the 1990s, research showed that corn (maize) plant tissues infected with the endophyte Bacillus subtilis were less likely to become infected with Fusarium moniliforme fungus. Other research has indicated the potential for prior infection of corn (maize) plant tissues to hinder any subsequent aflatoxin production in that plant by Aspergillus flavus fungus. See also BACTERIA, HOST VECTOR (HV) SYSTEM, DEOXYRIBONUCLEIC ACID (DNA), CORN, ENDOPHYTE, FUNGUS, FUSARIUM MONILIFORME, AFLATOXIN.


Bacillus thuringiensis (B.t.)
Discovered by bacteriologist Ishiwata Shigetane on a diseased silkworm in 1901. Later discovered on a dead Mediterranean flour moth, and first named Bacillus thuringiensis, by Ernst Berliner in 1915. Today, B. thuringiensis refers to a group of rod-shaped soil bacteria found all over the earth, that produce “cry” proteins which are indigestible by — yet still “bind” to — specific insects’ gut (stomach) lining (epithelium cell) receptors, so those “cry” proteins are thereby toxic to certain classes of insects (corn borers, corn rootworms, mosquitoes, black flies, some types of beetles, etc.), but are harmless to all mammals. At least 20,000 strains of B. thuringiensis are known. Genes that code for the production of these cry proteins that are toxic to insects have been inserted by scientists since 1989 into vectors (i.e., viruses, other bacteria, and other microorganisms) in order to confer insect resistance to certain agricultural plants (e.g., via expression of those B.t. proteins by one or more tissues of the transgenic plant). For example, the B.t. strain known as B.t. kurstaki, which is fatal when ingested by the European corn borer was first (genetically) inserted into a corn plant (via vector) in 1991. B.t. kurstaki kills borers via perforation of that insect’s gut by cry (“crystal- like”) proteins that are coded for by the B.t. kurstaki gene. The vectors as listed B above are entities that can take up and carry the DNA into plant or other cells. Vectors are DNA-carrying vehicles. See also ENDOPHYTE, CORN, GENE, PSEUDOMONAS FLUORESCENS, AGROBACTERIUM TUMEFACIENS, AUREOFACIN, EUROPEAN CORN BORER (ECB), COWPEA TRYPSIN INHIBITOR (CpTI), PROTEIN, “SHOTGUN” METHOD, CODING SEQUENCE, FUSARIUM, VECTOR, EXPRESS, GENETIC ENGINEERING, “EXPLOSION” METHOD, BIOLISTIC® GENE GUN, CRY PROTEINS, CRY1A (b) PROTEIN, CRY1A (c) PROTEIN, CRY9C PROTEIN, B.t. KURSTAKI, B.t. TENEBRIONIS, B.t. ISRAELENSIS, B.t. TOLWORTHI, ION CHANNELS.

Back Mutation
Reverse the effect of a mutation that had inactivated a gene, thus restoring wild phenotype. See also PHENOTYPE, MUTATION.

Bacteria
From the Greek bakterion, stick, since the first bacteria viewed by man (via crude microscopes) appeared to be stickshaped. Any of a large group of microscopic organisms having round, rod-like, spiral, or filamentous unicellular or noncellular bodies that are often aggregated into colonies, are enclosed by a cell wall or membrane (procaryotes), and lack fully differentiated nuclei. Bacteria may exist as free-living organisms in soil, water, and organic matter, or as parasites in the live bodies of plants and animals. See also BACTERIOLOGY.









Bacterial Artificial Chromosomes (BAC)
Pieces of DNA (e.g., plant DNA) that have been cloned (made) inside living bacteria (e.g., by plant researchers who need to “manufacture” some pieces of plant DNA). They can be utilized as vectors (for genetic engineering), to carry (inserted) genes into certain organisms. Some potential uses of BACs include: the “manufacture” of probes (i.e., sequences of DNA utilized to “find” complementary sequences within large pieces of DNA) via hybridization; the “manufacture” of “DNA sequence markers” for use in marker assisted selection (e.g., to guide choices made by commercial crop breeders, so they can more quickly select plants bearing gene(s) for a particular trait) to develop future improved crop varieties faster than was previously possible. See also BACTERIA, CLONE (A MOLECULE), SYNTHESIZING (OF DNA MOLECULES), CHROMOSOMES, YEAST ARTIFICIAL CHROMOSOMES (YAC), HUMAN ARTIFICIAL CHROMOSOMES (HAC), PROBE, MARKER ASSISTED SELECTION, COMPLEMENTARY DNA (c-DNA), HYBRIDIZATION (MOLECULAR GENETICS), DEOXYRIBONUCLEIC ACID (DNA), SEQUENCE
(OF A DNA MOLECULE), MARKER (DNA SEQUENCE), GENE, TRAIT, GENETIC ENGINEERING,
VECTOR.

Bacterial Expressed Sequence Tags
These are ESTs (expressed sequence tags) based on sequenced/mapped bacterial genes instead of the genes of (“traditional” EST) C. elegans nematode. They are utilized to “label” a given gene (i.e., in terms of that gene’s function/protein). See also BEST, EXPRESSED SEQUENCE TAGS (EST), BACTERIA, SEQUENCING (OF DNA MOLECULES), SEQUENCE (OF A DNA MOLECULE), MAPPING, CAENORHABDITIS ELEGANS (C. ELEGANS).

Bactericide
See MICROBICIDE, BIOCIDE, ANTIBIOTIC.

Bacteriocide
See BACTERICIDE.

Bacteriocins
Proteins produced by many types of bacteria that are toxic (primarily) to other closely related strains of the particular bacteria that produce those proteins. Bacteriocins hold promise (e.g., after genetic engineering of the DNA responsible for their production) for future possible use as food preservatives (i.e., acting against bacteria species that cause food spoilage). For example: the bacteriocin known as curvaticin 13, which is produced by Lactobacillus curvatus bacteria, inhibits the food-poisoning bacteria Listeria monocytogenes; the bacteriocin known as sakacin K, which is produced by Lactobacillus sakei bacteria, inhibits the food-poisoning bacteria Listeria monocytogenes. However, the effectiveness of both curvaticin 13 and sakacin K are lessened by the presence of salt (e.g., in processed meat products), so salt resistance would be a desired property that may some day be engineered into those bacteriocins. See also PROTEIN, BACTERIA, BACTERIOLOGY, BIFIDUS, STRAIN, TOXIN, GENETIC ENGINEERING, DEOXYRIBONUCLEIC ACID (DNA), CODING SEQUENCE, COLICINS, LISTERIA MONOCYTOGENES, EXTREMOPHILIC BACTERIA.

Bacteriology
The science and study of bacteria, a specialized branch of microbiology. The bacteria constitute a useful and essential group in the biological community. Although some bacteria prey on higher forms of life, relatively few are pathogens (disease-causing organisms). Life on earth depends on the activity of bacteria to mineralize organic compounds and to capture the free nitrogen molecules in the air for use by plants. Also, bacteria are important industrially for the conversion of raw materials into products such as organic chemicals, antibiotics, cheeses, etc. Genetically engineered bacteria are starting to be used to produce high value-added pharmaceuticals and specialty chemicals. See also ESCHERICHIA COLIFORM (E. COLI).

Bacteriophage
Discovered in 1917 by Felix d’Herelle (fr. bacteria eaters), a bacteriophage is a virus that attaches to, injects its DNA into, and multiplies inside bacteria, which causes bacteria to die. Often abbreviated as simply phage, another name for virus. As an example, bacteriophage lambda is commonly used as a vector in rDNA experiments in Escherichia coli and attaches to a specific receptor, which in the bacteria also normally functions in sugar transport across the cell wall. Viruses come in many shapes and sizes. See also ESCHERICHIA COLIFORM (E. COLI), RECEPTORS, VIRUS, TRANSDUCTION (GENE), TRANSDUCTION (SIGNAL), TRANSFECTION, LAMBDA PHAGE.

Bacterium
See BACTERIA.

Baculovirus
A class of virus that infects lepidopteran insects (e.g., cotton bollworm or gypsy moth larva). Baculoviruses can be modified via genetic engineering to insert new genes into the larva, causing those larva to then produce proteins desired by man (e.g., pharmaceuticals). Baculoviruses are potentially very useful for pharmaceutical production, because the protein molecules produced are glycosylated (i.e., have relevant oligosaccharides attached to them), and baculoviruses cannot infect vertebrate animals. Such pharmaceuticals are thus not even a theoretical risk to humans. See also VIRUS, GENETIC ENGINEERING, GENE, PROTEIN, GLYCOSYLATION, BACULOVIRUS EXPRESSION VECTORS (BEVs).

Baculovirus Expression Vectors (BEVs)
Vectors (used by researchers to carry new genes into cells) in which the agent is a baculovirus (a virus that infects certain types of insects only). These could conceivably be used to make a genetically engineered insecticide that is specific to a targeted insect (wouldn’t harm anything but that insect). For example, a BEV might be used to cause a cotton bollworm adult protein to be expressed when the bollworm is a juvenile, thus killing the bollworm before it has a chance to damage a cotton crop. See also BACULOVIRUS, VIRUS, VECTOR, GENE, PROTEIN, CELL, GENETIC ENGINEERING.

Bakanae See FUSARIUM MONILIFORME.

BAR Gene
A dominant gene from the Streptomyces hygroscopicus bacterium, which codes for (causes production of) the enzyme phosphinothricin acetyl transferase (PAT). When the BAR gene is inserted into a plant’s genome (its DNA), it imparts resistance to glufosinate-ammonium based herbicides. Because the glufosinate-ammonium herbicides act via inhibition of glutamine synthetase (an enzyme that catalyzes the synthesis of glutamine), this inhibition (of enzyme) kills plants (e.g., weeds). That is because glutamine is crucial for plants to synthesize critically needed amino acids. The BAR gene is often utilized by genetic engineers as a marker gene. See also GENE, GENOME, GENETIC ENGINEERING, MARKER (GENETIC MARKER), DOMINANT ALLELE, ESSENTIAL AMINO ACIDS, HERBICIDE-TOLERANT CROP, GTS, SOYBEAN PLANT, CANOLA, CORN, GLUTAMINE, GLUTAMINE SYNTHETASE, PHOSPHINOTHRICIN, PHOSPHINOTHRICIN ACETYLTRANSERASE (PAT), PAT GENE.

Barley
The domesticated plant Hordeum vulgare, whose grain is utilized by man for various purposes, such as feed barley varieties (for feeding of livestock). Malting barley varieties (containing beta-amylase in their seeds) were created via mutation breeding (i.e., bombardment of the seeds by ionizing radiation to cause random genetic mutations, followed by selection of the particular mutation in which maltose is produced by that barley plant in its seeds). See also TRADITIONAL BREEDING METHODS, MUTATION, MUTATION BREEDING, AMYLASE.

Barnase
An enzyme that catalyzes destruction of nucleic acids (which thus kills the cell that the barnase is in). When the gene that codes for barnase is inserted via genetic engineering into a given plant and activated only in that plant’s pollen (the barnase is produced only in its pollen cells), that plant’s male parts become sterile. For crop plants possessing both male and female parts (monoecious plants), such male sterility facilitates the development of hybrids, because self-pollination does not occur. See also ENZYME, NUCLEIC ACIDS, CELL, GENE, GENETIC CODE, GENETIC ENGINEERING, GENETICS, HYBRIDIZATION (PLANT GENETICS), F1 HYBRIDS, MONOECIOUS.

Base (general)
A substance with a pH in the range 7–14, which will react with an acid to form a salt. Mild bases normally taste bitter and feel slippery to the touch. See also ACID.

Base (nucleotide)
A segment of the DNA (and RNA) molecules. One of the four (repeating) chemical units that comprise DNA/RNA that, according to their order and pairing (on the parallel strands of DNA/RNA molecules), represent the different amino acids (within the protein molecule that each gene in the DNA codes for). The four bases comprising DNA are adenine (A), cytosine (C), guanine (G), and thymine (T). See also DEOXYRIBONUCLEIC ACID (DNA), RIBONUCLEIC ACID (RNA), POLYMER, CODING SEQUENCE, CONTROL SEQUENCES, EXPRESSION, AMINO ACID, PROTEIN, GENE, ADENINE, CYTOSINE, GUANINE, THYMINE, URACIL, BASE PAIR (bp).

Base Excision Sequence Scanning (BESS)
A method that can be utilized to detect a “point mutation” in DNA (via rapid DNA sequence scanning). See also BASE PAIR (bp), NUCLEOTIDE, DEOXYRIBONUCLEIC ACID (DNA), MUTATION, POINT MUTATION, EXCISION, SEQUENCING (OF DNA MOLECULES), SEQUENCE (OF A DNA MOLECULE).

Base Pair (bp)
Two nucleotides that are in different nucleic acid chains and whose bases pair (interact) by hydrogen bonding. In DNA, the nucleotide bases are adenine (which pairs with thymine) and guanine (which pairs with cytosine). See also DEOXYRIBONUCLEIC ACID (DNA), GENETIC CODE, INFORMATIONAL MOLECULES.

Base Substitution
Replacement of one base (within a DNA molecule) by another base. See also BASE (NUCLEOTIDE), TRANSITION, TRANSVERSION.

Basic Fibroblast Growth Factor (BFGF)
See FIBROBLAST GROWTH FACTOR (FGF).

Basophilic
Staining strongly with basic dye. For example, basophil leukocytes are polymorphonuclear leukocytes which stain strongly with (take up a lot of) basic dyes. See also POLYMORPHONUCLEAR LEUKOCYTES (PMN).

Basophils
Also called basophilic leukocytes. A type of white blood cell (leukocyte) produced by stem cells within the bone marrow that synthesizes and stores histamine and also contains heparin. When two IgE molecules of the same antibody “dock” at adjacent receptor sites on a basophil cell, the two IgE molecules capture an allergen between them. A chemical signal is sent to the basophil causing the basophil cell to release histamine, serotonin, bradykinin, and “slowreacting substance.” Release of these chemicals into the body causes the blood vessels to become more permeable, which consequently causes the nose to run. These chemicals also cause smooth muscle contraction, resulting in sneezing, coughing, wheezing, etc. See also MAST CELLS, ANTIGEN, ANTIBODY, HISTAMINE, WHITE BLOOD CELLS, BASOPHILIC, LEUKOCYTES, POLYMORPHONUCLEAR LEUKOCYTES (PMN), STEM CELLS.

BB T.I.
See TRYPSIN INHIBITORS.

BBB
See BLOOD-BRAIN BARRIER (BBB).



Bce4
The name of a promoter (region of DNA) that controls/enhances an oilseed plant’s gene(s) that code for components (e.g., fatty acids, amino acids, etc.) of that plant’s seeds. For example, the Bce4 promoter causes such genes to be expressed during one of the earliest stages of canola plant’s seed production. See also PROMOTER, DEOXYRIBONUCLEIC ACID (DNA), GENE, POLYGENIC, PLASTID, EXPRESS, CANOLA, SOYBEAN PLANT, TRANSCRIPTION.

Bcr-Abl Gene
The gene (SNP) that causes the blood cancer chronic myelocytic leukemia (CML) in humans that possess it. See also GENE, SINGLE-NUCLEOTIDE POLYMORPHISMS (SNPs), CANCER, GLEEVEC™.

BESS Method
See BASE EXCISION SEQUENCE SCANNING (BESS).
B
BESS T-Scan Method
See BASE EXCISION SEQUENCE SCANNING (BESS).

Best Linear Unbiased Prediction (BLUP)
A statistical (data) technique employed by livestock breeders to determine the breeding (genetic trait) value of animals in a breeding program. See also GENETICS, TRAIT, PHENOTYPE, GENOTYPE, EXPECTED PROGENY DIFFERENCES (EPD).

Beta Carotene
A phytochemical (vitamin precursor) that is naturally produced in carrots, other orange vegetables, and in the endosperm portion of the corn (maize) kernel. If the corn kernel seed coat is torn (e.g., via insect chewing), the beta carotene inhibits growth of Aspergillus flavus fungi in the endosperm region of the kernel. In 1970, an orange (-fruited) cauliflower was discovered growing in a field in Canada. It was the result of a natural mutation that caused beta carotene to be produced in that cauliflower plant, at a level that was several hundred times higher than normal for cauliflower. Beta carotene has been found to aid eyesight in people who consume it, and may help prevent lung cancer and heart disease. Because beta carotene is processed into vitamin A by the human body, consumption of this phytochemical can help avoid human diseases (e.g., in developing countries where vitamin A is scarce) that result from vitamin A deficiency, e.g., coronary heart disease, certain cancers (cancer of prostate, lungs, etc.), childhood blindness, macular degeneration (a leading cause of blindness in older people), and various childhood diseases which often result in death due to a weakened immune system. See also VITAMIN, GOLDEN RICE, AFLATOXIN, FUNGUS, OH43, PHYTOCHEMICALS, NUTRACEUTICALS, CAROTENOIDS, CANCER, CORONARY HEART DISEASE (CHD), ANTIOXIDANTS, DESATURASE.

Beta Cells
Insulin-producing cells in the pancreas. If these cells are destroyed, childhood (also known as early-onset or Type I) diabetes results. See also ISLETS OF LANGERHANS, INSULIN, TYPE I DIABETES.
Beta Conformation
An extended, zigzag arrangement of a polypeptide (molecule) chain. See also POLYPEPTIDE (PROTEIN).

Beta Interferon
One of the interferons, it is a protein that was approved by the U.S. Food and Drug Administration (FDA) in 1993 to be used to treat multiple sclerosis (MS). See also INTERFERONS, FOOD AND DRUG ADMINISTRATION (FDA), PROTEIN.

Beta Oxidation
See CARNITINE.

Beta Sitostanol
See SITOSTANOL.

Beta Sitosterol
See SITOSTEROL.

Beta-conglycinin
Abbreviated β-conglycinin. One of the (structural) categories of proteins produced in seeds of legumes. In general, β-conglycinin contains one-quarter to onethird as much cysteine (cys) and methionine (met) per unit of protein as does glycinin. β-conglycinin has greater emulsifying capacity (in water) and emulsion stability than does glycinin, so its presence can assist the manufacture of firmer tofu, and better protein-based (emulsion) drinks. See also PROTEIN, CYSTEINE (cys), METHIONINE (met), GLYCININ, EMULSION.

Beta-D-Glucouronidase
See GUS GENE.

Beta-Glucan
See WATER SOLUBLE FIBER.

Beta-lactam Antibiotics
A category of antibiotics (e.g., penicillin G, ampicillin, etc.) that kill targeted bacteria by altering their essential cellular function of enzymatic controls that keep cell wall (peptido-glycan) synthesis (creation/repair) in balance with cell wall degradation. This causes cell wall breakdown and death of those bacteria (pathogens). See also ANTIBIOTIC, PENICILLIN G, BACTERIA, CELL, ENZYME, PATHOGEN, bla GENE.

Beta-Secretase
An enzyme that (in the human brain) is linked to presence of Alzheimer’s disease. See also ENZYME, ALZHEIMER’S DISEASE, AMYLOID β PROTEIN PRECURSOR (AβPP).


BEVs
See BACULOVIRUS, BACULOVIRUS EXPRESSION VECTORS (BEVs).

BFGF
Basic Fibroblast Growth Factor. See also FIBROBLAST GROWTH FACTOR (FGF).

BGYF
See BRIGHT GREENISH-YELLOW FLUORESCENCE (BGYF).

Bifidobacteria
See BIFIDUS.

Bifidus
A “family” of bacteria species that live within the digestive systems of certain animals (humans, swine, etc.). Examples include Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium adolescentis, and Bifidobacterium B acidophilus. In general, Bifidus bacteria help to promote good health of the host animals, by several means. They produce organic acids (e.g., propionic, acetic, lactic), which make the host animal’s digestive system more acidic. Because most pathogens (disease-causing microorganisms) grow best at a neutral pH (neither acidic nor base/caustic), the growth rates of pathogens are thereby inhibited. They “crowd out” enteric pathogens, since Bifidus bacteria grow fast in the acidic environment created by those organic acids. Some of the organic acids (e.g., propionic) produced by Bifidus bacteria are able to pass through the outer cell membrane of pathogenic bacteria and fungi; once inside those pathogens’ cells, these acids dissociate and acidify the cell interior (which disrupts protein synthesis, growth, and replication of that pathogen). They produce bacteriocins, which are proteins that suppress growth of the pathogenic bacteria. They produce certain short-chain fatty acids, which are absorbed by the host animal (e.g., in the colon) and thereby result in a reduction of triglycerides (fat) levels in the host animal’s bloodstream. That triglyceride reduction lowers the risk of coronary heart disease and thrombosis. See also BACTERIA, SPECIES, ACID, BASE (GENERAL), PATHOGEN, CELL, PLASMA MEMBRANE, MICROORGANISM, FUNGUS, PROTEIN, RIBOSOMES, GROWTH (MICROBIAL), FRUCTOSE OLIGOSACCHARIDES, FATTY ACID, TRIGLYCERIDES, CORONARY HEART DISEASE (CHD), THROMBOSIS, PREBIOTICS, BACTERIOCINS, INSULIN, TRANSGALACTO OLIGOSACCHARIDES.

Bile
A liquid (mixture) made by the liver to help digest fats (in the intestine) and facilitate intestinal absorption of certain vitamins and minerals. Bile consists primarily of water, cholesterol, lipids (fat), “natural detergents” (i.e., salts of bile acids) that help break up fat globules in the intestines, and bilirubin. See also BILE ACIDS, BILIRUBIN, FATS, DIGESTION (WITHIN ORGANISMS).



Bile Acids
A “family” of acids derived by the human liver from cholesterol (i.e., from foods), and excreted into the bile by the liver. They help to emulsify (food-source) fats in the small intestine, as part of the crucial first step in the digestion of fats. See also CHOLESTEROL, DIGESTION (WITHIN ORGANISMS), LECITHIN, FATS, LIPIDS.

Bilirubin
A component (pigment) of red blood cells (i.e., erythrocytes), that is recovered (from old red blood cells) and recycled into making bile (a liquid that aids the digestive process) by the liver. See also ERYTHROCYTES, BILE, DIGESTION (WITHIN ORGANISMS), ENDOTHELIUM.

BIO
See BIOTECHNOLOGY INDUSTRY ORGANIZATION (BIO).

Bioassay
Determination of the relative strength or bioactivity of a substance (e.g., a drug). A biological system (such as living cells, organs, tissues, or whole animals) is exposed to the substance in question and the effect on the living test system is measured. See also BIOLOGICAL ACTIVITY, ASSAY, BIOCHIP.

Biochemistry
The study of chemical processes that comprise living things (systems); the chemistry of life and living matter. Despite the dramatic differences in the appearances of living things, the basic chemistry of all organisms is strikingly similar. Even tiny one-celled creatures carry out essentially the same chemical reactions that each cell of a complex organism (such as man) carries out. See also MOLECULAR BIOLOGY, MOLECULAR DIVERSITY.


















Biochip
A term first used with regard to an electronic device that utilizes biological molecules as the “framework” for other molecules acting as semiconductors and functioning as an integrated circuit.

1. During the 1990s, this term also became commonly used to refer to various “laboratories on a chip” to:
• Analyze very small samples of DNA
• Assess the impact of pharmaceuticals — or pharmaceutical drug candidate molecules — on specific cells (i.e., attached to the biochip’s surface) or on specific cellular receptors (ligand-receptor response of cell)
• Size and sort DNA fragments (genes) via the (proportional) fluorescence of dyes intercalated in the DNA molecules
• Detect presence of specific DNA fragments (genes) via hybridization to a probe (that was fabricated onto the chip)
• Size and sort protein molecules (via various cells fabricated onto the chip)
• Assess pharmaceuticals via adhesion molecules attached to the chip
• Detect specific pathogens or cancerous cells in a blood sample (e.g., by applying controlled electrical fields to cause those cells to collect at electrodes on the chip)
• Screen for compounds that act against a disease (e.g., by applying antibodies linked to fluorescent molecules, then measuring electronically the fluorescence triggered by antibody-binding)
• Conduct gene expression analysis by measuring the fluorescence of messenger RNA (specific to which particular gene is “turned on”) when that mRNA hybridizes with DNA (from genome) on hybridization surface on the chip

2. Shortly after the 1990s, several companies manufactured biochips capable of sequencing (determining the sequence of) DNA samples. Such biochips have, attached to their surfaces, all possible “DNA probes” (short sequences of DNA). The sample (i.e., the unknown DNA molecule) is passed over the probe-covered surface of the biochip, where each relevant segment (within the large unknown DNA molecule) hybridizes (“pairs”) with the short “DNA probe” attached to a known location on the surface of the biochip. Because the sequence of each DNA probe — at each specified location on the biochip — is known, that information (i.e., the probes’ sequences to which the unknown DNA molecule hybridized) is then used to “assemble the complete sequence” of the unknown DNA molecule.

3. Sometimes refers to an electronic device that uses biological molecules as the framework for other molecules that act as semiconductors and function as an integrated circuit. The future working parts of the science of bioelectronics, biochips may consist of two- or three dimensional arrays of organic molecules used as switching or memory elements. If biochip technology proves to be feasible, one application will be to shrink currently existing biosensors in size. This would enable the biosensors to be implanted in the body or in organs and tissues for the sake of monitoring and controlling certain bodily functions.
A future possibility is to try to provide sight for the blind using light sensitive (e.g., protein-covered electrode) biochips implanted in the eyes to replace a damaged retina. For example, during 2001, Alan Chow implanted such biochips into several men whose retinas had been damaged by the disease retinitis pigmentosa. See also BIOELECTRONICS, BIONICS, BIOSENSORS (ELECTRONIC), DEOXYRIBONUCLEIC ACID (DNA), RIBONUCLEIC ACID (RNA), GENE, RECEPTORS, HIGH-THROUGHPUT SCREENING (HTS), BIOINORGANIC, TARGET-LIGAND INTERACTION SCREENING, ANTIBODY, CHARACTERIZATION ASSAY, BIOASSAY, ASSAY, LUMINESCENT ASSAY, PROTEIN, LIGAND (IN BIOCHEMISTRY), MICROFLUIDICS, PROBE, PROTEOMICS, PROTEOME CHIP, BIORECEPTORS, HYBRIDIZATION (MOLECULAR BIOLOGY), FLUORESCENCE, ADHESION MOLECULE, GENE EXPRESSION ANALYSIS, PATHOGEN, BIOINFORMATICS, MICROARRAY (TESTING), HYBRIDIZATION SURFACES, MESSENGER RNA (mRNA), GENOMICS, QUANTUM DOT, QUANTUM WIRE, NANOCOMPOSITES, SEQUENCING (OF DNA MOLECULES).

Biocide
Any chemical or chemical compound that is toxic to living things (systems). Literally “biokiller” or killer of biological systems. Includes insecticides, bactericides, fungicides, etc. Most bactericides accomplish their task (killing bacteria) via massive lysis (disintegration) of bacteria cell walls (membranes). However, one (triclosan) kills bacteria by inhibiting enoyl-acyl protein reductase; a crucial enzyme utilized by bacteria in their synthesis of fatty acids. See also BACTERICIDE, MICROBICIDE, LYSIS, BACTERIA, CELL, FATTY ACID, ENZYME, PROTEIN, ESSENTIAL FATTY ACIDS, ESSENTIAL NUTRIENTS.
B
Biodegradable
Describes any material that can be broken down by biological action (dissimilation, digestion, denitrification, etc.). The breakdown of material (e.g., animal carcasses, dead plants, even manmade chemicals) by microorganisms (bacteria, fungus, etc.). The biodegradation process is often assisted (i.e., first step) by the actions of animals and insects (e.g., feeding on dead carcasses, which breaks down those carcasses to make their materials more available for microorganisms to “feed” upon). For example, vultures and the yellow swallowtail butterfly often are the first to feed on the carcasses of dead alligators in the state of Florida, which helps make the alligator’s material (body tissue) more readily available to microorganisms (e.g., in the dung excreted by those “first step” carcass feeders). See also DIGESTION (WITHIN ORGANISMS), MICROORGANISMS, BACTERIA, FUNGUS, GLYCOLYSIS, METABOLISM, NITRIFICATION.

Biodesulfurization
The removal of organic and inorganic sulfur (a pollution source) from coal by bacterial and soil microorganisms. See also BIOLEACHING, BIORECOVERY, BIOSORBENTS.

Biodiversity
Defined to be “the variability among living organisms from all sources including terrestrial, marine/aquatic and the complexes of which they are a part” by the Convention on Biological Diversity. See also CONVENTION ON BIOLOGICAL DIVERSITY.


Bioelectronics
Also called biomolecular electronics. It is the field where biotechnology is crossed with electronics. The branch of biotechnology that deals with the electroactive properties of biological materials, systems, and processes, together with their exploitation in electronic devices. Bioelectronics will attempt to replace traditional semiconductor materials (e.g., silicon or gallium arsenide) with organic materials such as proteins (biochips). See also BIOCHIPS, BIOSENSORS (ELECTRONIC), BIOINORGANIC, BIONICS, QUANTUM WIRE, SELF-ASSEMBLY (OF A LARGE MOLECULAR STRUCTURE).

Biogenesis
The theory that living organisms are produced only by other living organisms. That is, the theory of generation from preexisting life. It is the opposite of abiogenesis, or spontaneous generation.

Biogeochemistry
A branch of geochemistry that is concerned with biological materials and their relation to earth’s chemicals in an area.

Bioinformatics
This term refers to the generation/creation, collection, storage (in databases), and efficient utilization of data/information from genomics (functional genomics, structural genomics, etc.), combinatorial chemistry, high-throughput screening, proteomics, and DNA sequencing research efforts in order to accomplish a (research) objective (e.g., to discover a new pharmaceutical or a new herbicide). Examples of the data/information that are manipulated and stored include gene sequences, biological activity/function, pharmacological activity, biological structure, molecular structure, protein-protein interactions, and gene expression products/amounts/timing. See also GENOMICS, FUNCTIONAL GENOMICS, PHARMACOGENOMICS, STRUCTURAL GENOMICS, COMBINATORIAL CHEMISTRY, HIGH-THROUGHPUT SCREENING, PROTEOMICS, BIOCHIP, GENE, GENETIC MAP, GENETIC CODE, SEQUENCING (OF DNA MOLECULES), IN SILICO BIOLOGY, IN SILICO SCREENING, GENE EXPRESSION ANALYSIS, METAMODEL METHODS (OF BIOINFORMATICS).

Bioinorganic
This term refers to the combination of organic (life) materials with inorganic materials to create (useful materials). For example, Abalone shellfish make their shells via a combination of protein and calcium carbonate. Researchers are working on making semiconductor devices (chips) containing peptides, etc. attached to silicon or gallium arsenide. See also PROTEIN, BIOCHIP, PEPTIDE, BIOSENSORS (ELECTRONIC), NANOCOMPOSITES.






Bioleaching
The biomediated recovery of precious metals from their ores. In the recovery of gold, for example, the microorganism T. ferroxidans may be used to cause the gold to leach out of the ore so it may then be concentrated and smelted. Aluminum may be similarly bioleached from clay ores, using heterotropic bacteria and fungi. See also BIORECOVERY, BIOGEOCHEMISTRY, BACTERIA, BIOSORBENTS.
B
Biolistic® Gene Gun
The word “biolistic” was coined from the words “biological” and “ballistic” (pertaining to a projectile fired from a gun). Used to shoot pellets that are coated with genes (for desired traits) into plant seeds or plant tissues, in order to get those plants to then express the new genes. The gun uses an actual explosive (.22 caliber blank) to propel the material. Compressed air or steam may also be used as the propellant. The Biolistic® Gene Gun was invented in 1983–1984 at Cornell University by John Sanford, Edward Wolf, and Nelson Allen. The gun and its registered trademark are now owned by E. I. du Pont de Nemours and Company. See also WHISKERS™, “SHOTGUN” METHOD, GENETIC ENGINEERING, GENE, BIOSEEDS, MICROPARTICLES.

Biological Activity
The effect (change in metabolic activity upon living cells) caused by specific compounds or agents. For example, the drug aspirin causes the blood to thin, i.e., to clot less easily. See also BIOASSAY, PHARMACOPHORE, RETINOIDS.

Biological Oxygen Demand (BOD)
The oxygen used in meeting the metabolic needs of aerobic organisms in water containing organic compounds. Numerically, it is expressed in terms of the oxygen consumed in water at a temperature of 68°F (20°C) during a 5-day period. The BOD is used as an indication of the degree of water pollution. See also METABOLISM.

Biological Vectors
See VECTORS.

Biology
From the two Greek words bios (life) and logos (word), it is the field of science encompassing the study of life. See also GENETICS, CLADISTICS, ORGANISM, SPECIES.









Bioluminescence
The enzyme-catalyzed production of light by living organisms, typically during mating or hunting. This word literally means living light. First identified/ analyzed in 1947 by William McElroy, bioluminescence results when the enzyme luciferase comes into contact with adenosine triphosphate (ATP)/luciferin, inside the photophores (organs which emit the light) of the organism. Such production of light by living organisms is exemplified by fireflies, South America’s railroad worm, and by many deep ocean marine organisms. Bioluminescence has been utilized by man as a genetic marker (e.g., to cause a genetically engineered plant to glow as evidence that a gene was successfully transferred into that plant). Another use of bioluminescence by man is for the rapid detection of foodborne pathogenic bacteria (e.g., in a food processing factory). One rapid-test for bacteria uses two chemical reagents that first break down bacteria cell membranes, then cause the ATP from those broken cells to luminesce. Another rapid-test uses electrophoresis to first separate the sequences of bacteria’s DNA (following its extraction from cell and enzymatic fragmentation), then cause those separated sequences to luminesce. A camera is used to record the sequence-pattern light emission and compare that pattern to patterns of pathogenic bacteria previously stored in a database. See also ENZYME, MARKER (GENETIC MARKER), BACTERIA, TOXIN, PATHOGENIC, ESCHERICHIA COLIFORM 0157:H7 (E. COLI 0157:H7), CELL, LUMINESCENT ASSAY, ADENOSINE TRIPHOSPHATE (ATP), GENETIC ENGINEERING, ELECTROPHORESIS, POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE), SEQUENCE (OF A DNA MOLECULE), PHOTORHABDUS LUMINESCENS RESTRICTION ENDONUCLEASES, NITRIC OXIDE.

Biomass
All organic matter grown by the photosynthetic conversion of solar energy (e.g., plants) and organic matter from animals. See also PHOTOSYNTHESIS, LOW-TILLAGE CROP PRODUCTION, NO-TILLAGE CROP PRODUCTION.

BioMEMS
Refers to MEMS designed to work within biological systems/organisms. Examples include microfluidic cell sorters, or a biochip possessing diverging nanometer scale etched channels and a fluorescence detector. Via an electrical field that would drive electrophoretic separation of DNA (fragments), samples of DNA could be separated/ sorted/identified by fluorescence. See also MEMS (NANOTECHNOLOGY), ORGANISM, ELECTROPHORESIS, MICROFLUIDICS, CELL SORTING, NANOMETERS (nm), FLUORESCENCE, BIOCHIP, NANOTECHNOLOGY.

Biomimetic Materials
Synthetic (man-made) molecules or systems that are analogues of natural (made by living organisms) materials. B For instance, molecules have been synthesized by man that act chemically like natural proteins, but are not as easily degraded by the digestive system (as are those natural protein molecules). Other systems, such as reverse micelles and/or liposomes, exhibit certain properties that mimic certain aspects of living systems. See also PROTEIN, DIGESTION (WITHIN ORGANISMS), REVERSE MICELLE (RM), LIPOSOMES, ANALOGUE, BIONICS, BIOPOLYMER.

Biomolecular Electronics
See BIOELECTRONICS.

Biomotors
Refers to biologically based technologies/ techniques used to “power” nanometer-size machines (e.g., “nanobots”) in one way or another. For example, during 2000 Bernard Yurke and colleagues created a molecular-machine “tweezers” (grasper) consisting of three separate strands of DNA (two of them were hybridized separately to small complementary sequences near the two ends of the first DNA strand). The “tweezers” can then be closed (or opened) by sequentially adding other DNA strands (to the three) which can hybridize to small complementary sequences on second and third strands, or hybridize to the fourth strand, causing it to unhybridize from the second and the third strands. See also NANOTECHNOLOGY, BIOLOGY, NANOMETERS (NM), MOLECULAR MACHINES, DEOXYRIBONUCLEIC ACID (DNA), HYBRIDIZATION (MOLECULAR GENETICS), SEQUENCE (OF A DNA MOLECULE), COMPLEMENTARY (MOLECULAR GENETICS), SELF-ASSEMBLY (OF A LARGE MOLECULAR STRUCTURE).

Bionics
An interscience discipline for constructing artificial systems that resemble or have the characteristics of living systems. Bionics can encompass (in whole, or in part) bioelectronics, biosensors, biomimetic materials, biophysics, biomotors, and self-assembly (of a large molecular structure). See also BIOLOGY, BIOELECTRONICS, BIOMIMETIC MATERIALS, BIOSENSORS (ELECTRONIC), BIOPHYSICS, BIOMOTORS.

Biophysics
An area of scientific study in which physical principles, physical methods, and physical instrumentation are used to study living systems or systems related to life. It overlaps with biophysical chemistry, which is more specialized in scope since it is concerned with the physical study of chemically isolated substances found in living organisms.

Biopolymer
A high molecular weight organic compound found in nature, whose structure can be represented by a repeated small unit [i.e., monomer (links)]. Common biopolymers include cellulose (long-chain sugars found in most plants and the main constituent of dried woods, jute, flax, hemp, cotton, etc.) and proteins in general, and specifically collagen and gelatin. See also MOLECULAR WEIGHT, PROTEIN, POLYMER.

Bioreceptors
Refers to fragments of DNA, antibodies, protein molecules, and cellular probes (e.g., adhesion molecule) when those are attached to a man-made surface (e.g., biochip) for purposes of analyzing biological substances. See also HYBRIDIZATION SURFACES, BIOCHIPS, ANTIBODY, DEOXYRIBONUCLEIC ACID (DNA), PROTEIN, ADHESION MOLECULE, ORPHAN RECEPTORS, MICROARRAY (TESTING).

Biorecovery
The use of organisms (including bacteria, plants, fungi, and algae) in the recovery (collecting) of various metals and/or organic compounds from ores or garbage (other matrices). See also BIOLEACHING, CONSORTIA, BIOSORBENTS, PHYTOREMEDIATION, METABOLIC ENGINEERING, BACTERIA, FUNGUS.

Bioremediation
The use of organisms (plants, bacteria, fungi, etc.) to consume or otherwise help remove (biorecovery) materials (toxic chemical wastes, metals, etc.) from a contaminated site (e.g., the land and ponds on the site of an old refinery). See also BIORECOVERY, PHYTOREMEDIATION, METABOLIC ENGINEERING, BIOLEACHING, BIODESULFURIZATION, ORGANISM, BACTERIA, FUNGUS.

Biosafety
See CONVENTION ON BIOLOGICAL DIVERSITY (CBD).

Biosafety Protocol
See CONVENTION ON BIOLOGICAL DIVERSITY (CBD), INTERNATIONAL PLANT PROTECTION CONVENTION (IPPC).

Bioseeds
Plant seeds produced via genetic engineering of existing plants. See also GENETIC ENGINEERING, BIOLISTIC® GENE GUN, HERBICIDE-TOLERANT CROP, PAT GENE, EPSP SYNTHASE, ALS GENE, CP4 EPSPS, GLYPHOSATE OXIDASE, CHOLESTEROL OXIDASE, HIGH-LYSINE CORN, ACURON™ GENE, HIGH-METHIONINE CORN, HIGH-PHYTASE CORN AND SOYBEANS, HIGHSTEARATE SOYBEANS, LOW-STACHYOSE SOYBEANS, B LOX NULL, PLANT’S NOVEL TRAI(PNT), “SHOTGUN” METHOD [TO INTRODUCE FOREIGN (NEW) GENES INTO PLANT CELLS], BACILLUS THURINGIENSIS (B.t.), B.t. KURSTAKI, B.t. TENEBRIONIS, B.t. ISRAELENSIS, CRY PROTEINS, CRY1A (b) PROTEIN, CRY1A (c) PROTEIN, CRY9C PROTEIN.















Biosensors (chemical)
Chemically based devices that are able to detect and/or measure the presence of certain molecules (DNA, antigens, pesticides, etc.). These devices are currently created in the following
forms:
1. A two-part diagnostic test that can detect the presence of trace amounts of specific chemicals (e.g., pesticides). The (chemical) biosensor consists of an immobilized enzyme (to bind the trace chemical) combined with a color reagent (to indicate visually the presence of the trace chemical).
2. A one-part test that can detect specific DNA segments in complex (“dirty,” multiple component) samples. The biosensor consists of 13-nm gold particles onto which are attached numerous nucleotide molecular chains. Each nucleotide chain contains 28 nucleotides. The 13 nucleotides that are closest to each gold particle serve as a spacer, and solutions containing such (spaced) randomly distributed gold particles appear red in color when illuminated by light. The 15 nucleotides that are farthest from each gold particle are chosen to be complementary to, and thus bind to, nucleotide sequences in the target (e.g., DNA) molecule. In the presence of the specific target molecule, a closely linked network of gold particles and double-stranded nucleotide molecular chains forms (overcoming the 13-nucleotide “spacer” which previously held the gold particles apart). When doublestranded chains form (i.e., target molecule is present), the distance between gold particles becomes less than the size of those particles, making the solution containing (bound) particles appear blue in color when illuminated by light. See also ENZYME, IMMUNOASSAY, NANOCRYSTAL MOLECULES, NANOTECHNOLOGY, DEOXYRIBONUCLEIC ACID (DNA), NANOMETERS (nm), ANTIGEN, SEQUENCE (OF A DNA MOLECULE), NUCLEOTIDE, POLYMER, COMPLEMENTARY DNA (c-DNA), DOUBLE HELIX, DUPLEX, SELF-ASSEMBLY.

Biosensors (electronic)
Electronic sensors that are able to detect and measure the presence of biomolecules such as sugars or DNA segments. Currently created by:
1. Fusing organic matter (e.g., enzymes, antibodies, receptors, or nucleic acids) to tiny electrodes; yielding devices that convert natural chemical reactions into electric current to measure blood levels of certain chemicals (e.g., glucose or insulin), control functions in an artificial organ, monitor some industrial processes, act as a robot’s “nose,” etc.
2. Fusing organic matter (segment of DNA, antibody, enzyme, etc.) onto the surfaces of etched silicon wafers; yielding devices that convert supramolecular interactions [e.g., nucleotide hybridization, enzyme-substrate binding, lectin-carbohydrate (sugar) interactions, antibody-antigen binding, host-guest complexation, etc.] into electric current via a charge-coupled device (CCD) detector. The CCD detector measures the shift in interference pattern caused by change in refractive index that results when the (sensed) molecule tightly binds to the fused (electronic) organic matter. For such an etched-silicon-wafer biosensor, the nucleotide hybridization (binding) enables the detection of femtomolar (10-15 mole or 0.000000000000001) concentrations of DNA. If the (sensed) DNA segment is not complementary to the fused DNA segment, there is no significant change in the interference pattern.

A major goal is to build future generations of biosensors directly into computer chips. (Researchers have discovered that proteins can replace certain metals in semiconductors.) This would enable low-cost mass production via processes similar to those now B used for existing semiconductor chips, with circuits built right into the sensor to process data picked up by the biological matter on the chip. See also BIOCHIPS, QUARTZ CRYSTAL MICROBALANCES, BIOELECTRONICS, ENZYME, GENOSENSORS, RECEPTORS, ANTIBODY, BIOINORGANIC, INSULIN, COMBINATORIAL CHEMISTRY, SUBSTRATE (CHEMICAL), LECTINS, SUGAR MOLECULES, CARBOHYDRATES (SACCHARIDES), GLUCOSE (GLc), DEOXYRIBONUCLEIC ACID (DNA), NUCLEOTIDE, HYBRIDIZATION (MOLECULAR GENETICS), HYBRIDIZATION SURFACES, ANTIGEN, COMPLEMENTARY DNA (c-DNA), GENE, NANOTECHNOLOGY, TEMPLATE.

Biosilk
A biomimetic, man-made fiber produced by:
1. Sequencing the “dragline silk” protein that is produced by the orb-weaving spider
2. Synthesizing genes to code for the “dragline silk” protein (components)
3. Expressing those genes in a suitable host (i.e., yeast, bacteria) to cause production of the protein(s)
4. Dissolving the protein in a solvent, and then “spinning” the protein into fiber form by passing the liquid (dissolved protein) through a small orifice, followed by drying to remove the solvent See also BIOMIMETIC MATERIALS, BIOPOLYMER, PROTEIN, SEQUENCING (OF PROTEIN MOLECULES), GENE, GENE MACHINE, SYNTHESIZING (OF DNA MOLECULES), DEOXYRIBONUCLEIC ACID (DNA), EXPRESS, SUPERCRITICAL CARBON DIOXIDE.

Biosorbents
Microorganisms which, either by themselves or in conjunction with a support/ substrate system (e.g., inert granules) effect the extraction (e.g., from ore) and/or concentration of desired (precious) metals or organic compounds by means of selective retention of those entities. Retention of organic compounds (e.g., gasoline) may be for the purpose of cleaning polluted soil. See also BIORECOVERY, BIOLEACHING, CONSORTIA.

Biosphere
All the living matter on or in the earth, the oceans and seas, and the atmosphere. The area of the planet in which life is found to occur.

Biosynthesis
Production of a chemical compound or entity by a living organism.








Biotechnology
The means or way of manipulating life forms (organisms) to provide desirable products for man’s use. For example, beekeeping and cattle breeding could be considered to be biotechnology-related endeavors. The word biotechnology, coined in 1919 by Karl Ereky, applies to the interaction of biology with human technology. However, usage of the word biotechnology in the U.S. has come to mean all parts of an industry that knowingly create, develop, and market a variety of products through the willful manipulation, on a molecular level, of life forms, or utilization of knowledge pertaining to living systems. A common misconception is that biotechnology refers only to recombinant DNA (rDNA) work. However, recombinant DNA is only one of the many techniques used to derive products from organisms, plants, and parts of both for the biotechnology industry. A list of areas covered by the term biotechnology would more properly include: recombinant DNA, plant tissue culture, rDNA or gene splicing, enzyme systems, plant breeding, meristem culture, mammalian cell culture, immunology, molecular biology, fermentation, and others. See also GENETIC ENGINEERING, BIORECOVERY, RECOMBINANT DNA (rDNA), RECOMBINATION, DEOXYRIBONUCLEIC ACID (DNA), BIOLEACHING, GENE SPLICING, MAMMALIAN CELL CULTURE, FERMENTATION.

Biotechnology Industry Organization (BIO)
An American trade association composed of companies and individuals involved in biotechnology and in services to biotechnology companies (accounting, law, etc.). Formed in 1993, the BIO was created by the merger of its two predecessor trade associations — the Association of Biotechnology Companies (ABC) and the Industrial Biotechnology Association (IBA). The BIO works with the government and the public to promote safe and rational advancement of genetic engineering and biotechnology. See also BIOTECHNOLOGY, ASSOCIATION OF BIOTECHNOLOGY COMPANIES (ABC), INDUSTRIAL BIOTECHNOLOGY ASSOCIATION (IBA), JAPAN BIOINDUSTRY ASSOCIATION, SENIOR ADVISORY GROUP ON BIOTECHNOLOGY (SAGB).
B
Biotic Stresses
The stress (e.g., to crop plants) caused by insects, bacteria, viruses, fungi, nematodes, or other living things that attack plants. See also NEMATODES, FUNGUS, VIRUS, BACTERIA.













Biotin
A B-complex vitamin, also known as vitamin H, which is essential (required) for life of many grain-eating insects as well as for many of the metabolic pathways (series of chemical reactions) involved in milk production by cattle. All of the predominant cellulolytic bacteria (i.e., those that breakdown cellulose molecules) within the rumen (first stomach) of cattle require biotin for them to be able to grow. Biotin (within certain molecules) acts as a coenzyme in carboxylation reactions, thereby playing a critical role in gluconeogenesis, fatty acid synthesis (manufacture), and protein synthesis reactions occurring within all animals. Biotin enzymes are inhibited (blocked) by the protein avidin. Since insects must have biotin to live, avidin might be a useful ingredient to add to grain in order to protect it from insects such as weevils during storage. See also VITAMIN, METABOLISM, INTERMEDIARY METABOLISM, PATHWAY, BACTERIA, CELLULOSE, LYSIS, ENZYME, COENZYME, WEEVILS, GLUCONEOGENESIS, FATTY ACID, PROTEIN, AVIDIN.

Biotransformation (of a biosynthesized product)
See POSTTRANSLATIONAL MODIFICATION OF PROTEIN.

Biotransformation (of an introduced compound)
Biological portion of definition of persistence. See also PERSISTENCE.

bla Gene
A gene that confers resistance to β-lactam (beta-lactam) antibiotics (e.g., ampicillin). See also GENE, BETA-LACTAM ANTIBIOTICS, MARKER (GENETIC MARKER).

Black-layered (corn)
An indicator of a corn plant’s maturity. It refers to a distinctive dark line that forms in each corn kernel at maturity. See also CORN.

Black-lined (corn)
See BLACK-LAYERED (CORN).

Blast Cell
A large, rapidly dividing cell that develops from a B cell (B lymphocyte) in response to an antigenic stimulus. The blast cell then becomes an antibody-producing plasma cell. See also ANTIGEN, ANTIBODY, B LYMPHOCYTES, LYMPHOCYTE.

Blast Transformation
The process through which a B cell (B lymphocyte) becomes a blast cell. See also ANTIBODY, LYMPHOCYTE, BLAST CELL.

Blood Clotting
See FIBRIN.


Blood Derivatives Manufacturing Association
A trade organization of firms involved in producing pharmaceuticals from collected blood. See also SERUM, BUFFY COAT (CELLS), SEROLOGY.

Blood Plasma
See PLASMA.

Blood Platelets
See PLATELETS.

Blood Serum
See SERUM.

Blood-Brain Barrier (BBB)
The specialized layer of endothelial cells that line all blood vessels in the brain. The BBB prevents most organisms (e.g., bacteria) and toxins from entering the brain via the bloodstream while allowing the passage of oxygen and needed nutrients (iron, glucose, tryptophan, etc.). For example, receptors that line BBB cell surfaces (on the bloodstream side of the BBB) “latch onto” transferrin molecules (which contain iron molecules) as those transferrin molecules pass by in the bloodstream. These transferrin receptors first bind to the (passing) transferrin molecules, transport them through the BBB via a process called vaginosis, then release them (in order to supply needed iron to the brain cells). Factors such as aging, trauma, stroke, multiple sclerosis, and some infections will cause an increase in the permeability of the BBB. See also ENDOTHELIAL CELLS, TOXIN, TRANSFERRIN, TRANSFERRIN RECEPTOR, CHELATING AGENT, GLUCOSE, RECEPTORS, VAGINOSIS, HEME, BACTERIA, TRYPTOPHAN (trp), SEROTONIN.

Blunt-End DNA
A segment of DNA that has both strands terminating at the same basepair location, that is, fully base-paired DNA. No sticky ends. See also STICKY ENDS.

Blunt-End Ligation
A method of joining blunt-ended DNA fragments using the enzyme T4 ligase, which can join fully basepaired, double-stranded DNA. See also LIGASE, DEOXYRIBONUCLEIC ACID (DNA), BASE
PAIR (bp), BLUNT-END DNA.

BLUP
See BEST LINEAR UNBIASED PREDICTION (BLUP).

BOD
See BIOLOGICAL OXYGEN DEMAND (BOD).

Boletic Acid
See FUMARIC ACID (C4H4O4).
B
Bollworms
See HELIOTHIS VIRESCENS (H. VIRESCENS), HELICOVERPA ZEA (H. ZEA), PECTINOPHORA GOSSYPIELLA, B.t. KURSTAKI.

Bone Morphogenetic Proteins (BMP)
A family of proteinaceous growth factors (nine identified as of 1994) for bone tissue formation (e.g., at the site where a bone has been broken). BMPs stimulate a “recruitment” of bone forming cells (to the site of bone injury) which first form cartilage, then mineralize that cartilage to form bone. See also GROWTH FACTOR, PERIODONTIUM, PROTEIN.

Bovine Somatotropin (BST)
Also called bovine growth hormone. A protein hormone, produced in a cow’s pituitary gland, that increases the efficiency of the cow in converting its feed into milk. Increases milk production, and promotes cell growth in healing tissues of all ages of cattle. Promotes body
growth of young cattle. See also PROTEIN, GROWTH HORMONE (GH), HORMONE, SOMATOMEDINS, SPECIES SPECIFIC.

Bowman-Birk Trypsin Inhibitor See TRYPSIN INHIBITORS.

bp
Common abbreviation for base pair. See also BASE PAIR (bp).

Brassica
A fast-growing category of the mustard plant family, which also produces sulfur- based gases (a natural defense against certain fungi, nematodes, and insect pests). For example, Australian CSIRO scientists discovered in 1994 that sulfur-based isothiocyanates emitted by Brassica actively combat Wheat Take-All Disease (a fungal disease that attacks the roots of the wheat plant). See also ARABIDOPSIS THALIANA, WHEAT, WHEAT TAKE-ALL DISEASE, CANOLA, ALLELOPATHY, FUNGUS, NEMATODES.

Brassica campestre
See BRASSICA.

Brassica campestris
See CANOLA, BRASSICA.

Brassica napus
See CANOLA, BRASSICA.






BRCA Genes
Oncogenes that, when mutated, can cause development of breast cancer or ovarian cancer. All humans possess BRCA genes of one sort or another (the acronym BRCA stands for breast cancer). However, the two specific BRCA genes most likely to lead to breast cancer (BRCA 1 and BRCA 2) are present in only two percent of women who are of Northern European ancestry, most Caucasian women in the U.S., and Askenazi Jews whose ancesters are from Central and Eastern Europe. Those women possessing the BRCA 1 gene in their genome (DNA) have a 20–40% chance of developing ovarian cancer (and a 50–85% chance of developing breast cancer) in their lifetime. Those women possessing the BRCA 2 gene in their genome (DNA) have a 15–20%
chance of developing ovarian cancer (and a 55–85% chance of developing breast cancer) in their lifetimes. See also GENE, MUTATION, CANCER, ONCOGENES, HER2 GENE.

BRCA 1 Gene
See BRCA GENES.

BRCA 2 Gene
See BRCA GENES.

Breeder’s Rights
See PLANT BREEDER’S RIGHTS.

Bright Greenish-Yellow Fluorescence (BGYF)
An indication of the presence of fungus (e.g., in a sample of grain), when light of an appropriate wavelength is shone on sample. For example, when the fungus Aspergillus flavus infects cottonseed during boll development on the cotton plant, the resultant seed (when harvested) shows BGYF on its lint and linters. That fungus gains entry into the bolls typically via holes made by the pink bollworm (Pectinophora gossypiella). See also MYCOTOXINS, AFLATOXIN, FUNGUS, PECTINOPHORA GOSSYPIELLA, FLUORESCENCE.

Broad Spectrum
See GRAM STAIN.

Bromoxynil
An active ingredient in some herbicides, it kills certain types of plants (weeds). See also NITRILASE.

Broth
A fluid culture medium (for growing microorganisms). See also MEDIUM, CULTURE MEDIUM.

Brown Stem Rot (BSR)
A plant disease that can be caused by the soilborne fungus Phialaphora gregata in the soybean plant (Glycine max L. Merrill). Some soybean varieties are genetically resistant to BSR. See also FUNGUS, SOYBEAN PLANT, GENOTYPE, GENE, PATHOGENIC.

BSE
Bovine spongiform encephalopathy. A neurodegenerative disease of cattle. See also PRION.

BSP
Biosafety protocol. See also CONVENTION ON BIOLOGICAL DIVERSITY (CBD).

BSR
See BROWN STEM ROT (BSR).

BST
See BOVINE SOMATOTROPIN (BST).

BtR-4 Gene
See TOXICOGENOMICS.

B.t.
 See BACILLUS THURINGIENSIS (B.t.).
B
B.t.k.
See B.t. KURSTAKI.

B.t. israelensis
One of the approximately 30 subspecies groupings within the approximately 20,000 different strains of the soil bacteria known (collectively) as Bacillus thuringiensis (B.t.). When eaten (e.g., due to presence on food), the protoxin proteins produced by B.t. israelensis are toxic to mosquitoes and black fly (Diptera) larvae. See also BACILLUS THURINGIENSIS (B.t.), PROTOXIN,
ION CHANNELS.

B.t. kurstaki
One of the approximately 30 subspecies groupings within the approximately 20,000 different strains of the soil bacteria known (collectively) as Bacillus thuringiensis (B.t.). When eaten (e.g., as part of a genetically engineered plant), the protoxin proteins produced by B.t. kurstaki are toxic to certain caterpillars (Lepidoptera larvae), such as the European corn borer (pyralis). See also BACILLUS THURINGIENSIS (B.t.), PROTOXIN, CRY1A (b) PROTEIN, ION CHANNELS, EUROPEAN CORN BORER (ECB).

B.t. tenebrionis
One of the approximately 30 subspecies groupings within the approximately 20,000 different strains of the soil bacteria known (collectively) as Bacillus thuringiensis (B.t.). When eaten (e.g., as part of a genetically engineered plant), the protoxin proteins produced by B.t. tenebrionis are toxic to certain insects. See also BACILLUS THURINGIENSIS (B.t.), PROTOXIN, GENETIC ENGINEERING, ION CHANNELS.


B.t. tolworthi
One of the approximately 30 subspecies groupings within the approximately 20,000 different strains of the soil bacteria known (collectively) as Bacillus thuringiensis (B.t.). When eaten (e.g., as part of a genetically engineered crop plant), the protoxin proteins produced by B.t. tolworthi
are toxic to certain caterpillars (Lepidoptera larvae), such as the European corn borer (pyralis). See also BACILLUS THURINGIENSIS (B.t.), PROTOXIN, CRY9C PROTEIN, GENETIC ENGINEERING,
ION CHANNELS.

Buffy Coat (cells)
The layer of white blood cells (leukocytes) that separates out when blood is subjected to centrifugation. See also ULTRACENTRIFUGE, LEUKOCYTES, PLASMA, BLOOD DERIVATIVES MANUFACTURING ASSOCIATION.

Bundesgesundheitsamt (BGA)
German Federal Health Organization. The German government agency that must approve new pharmaceutical products for sale within Germany, it is the equivalent of the U.S. Food and Drug Administration (FDA). See also FOOD AND DRUG ADMINISTRATION (FDA), KOSEISHO, COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP), COMMITTEE ON SAFETY IN MEDICINES, MEDICINES CONTROL AGENCY (MCA), EUROPEAN MEDICINES EVALUATION AGENCY (EMEA).

BXN Gene
See NITRILASE.

 

No comments:

Post a Comment